Pengendalian Gerak Longitudinal Pesawat Fixed Wing FT-Explorer

Enrico Hadi Pranata, Try Susanto, Rikendry Rikendry, Ajeng Savitri Puspaningrum

Abstract


Unmanned Aerial Vehicle (UAV) or often called an unmanned aircraft is a vehicle that can fly by being controlled using radio waves or flying autonomously. Unmanned aircraft have an electro-mechanical based system to be able to perform missions programmatically using the laws of aerodynamics. One of the unmanned aircraft is a fixed wing type aircraft, which has a control plane in the form of an aileron to control the roll angle, an elevator to control the pitch angle, and a ruder to control the yaw angle. When an aircraft goes on a flying mission, many disturbances are encountered that destabilize the flight of the aircraft, one of which is the weather. Weather can be in the form of strong winds that cause loss of stability and spinning and thwart the flight mission. Spinning is the state of the aircraft rotating on the longitudinal axis. Therefore, it is necessary to have a control system so that the aircraft can overcome these disturbances. One of the control methods that can be used is the PID control method. The PID control method utilizes Feedback error to reach the point of stability. The PID control method not only utilizes the current error, but previous errors and predicts future errors. Based on the test results, the PID control method applied to unmanned aircraft is able to overcome the given disturbance well. Evidently when tested by giving disturbance to the roll angle, the aircraft is able to overcome the disturbance and return to stable flight maintaining longitudinal motion. The best response results are obtained with an overshoot of 6.9o, rise time of 0.45 sec, settling time of 1.2 sec, and steady state error of 0.45o.


Keywords


UAV; PID; Longitudinal; FT-Explorer

Full Text:

PDF

References


A. Majid, R. Sumiharto, and S. B. Wibisono, “Identifikasi Model dari Pesawat Udara Tanpa Awak Sayap Tetap Jenis Bixler,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 5, no. 1, p. 43, 2015, doi: 10.22146/ijeis.7152.

E. Gouthami and M. A. Rani, “Modeling of Closed Loop PID Controller for an Auto-Pilot Aircraft Roll Control,” pp. 71–74, 2014.

T. Dan and L. Pertanian, “Teknologi Pesawat Tanpa Awak Untuk Pemetaan Dan Pemantauan,” Inform. Pertan., vol. 20, no. 2, pp. 58–64, 2011, [Online]. Available: https://www.litbang.pertanian.go.id/warta-ip/pdf-file/vol-20-No2-2012/RizatusVol20No2Th2011.pdf

A. Jayadi, T. Susanto, and F. D. Adhinata, “Sistem Kendali Proporsional pada Robot Penghindar Halangan (Avoider) Pioneer P3-DX,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 1, p. 47, 2021, doi: 10.24843/mite.2021.v20i01.p05.

E. Irmawan and E. E. Prasetiyo, “Kendali Adaptif Neuro Fuzzy PID untuk Kestabilan Terbang Fixed Wing UAV ( Adaptive Control of Neuro Fuzzy PID for Fixed Wing UAV,” vol. 9, no. 1, pp. 73–78, 2020.

P. Poksawat, L. Wang, and A. Mohamed, “Gain Scheduled Attitude Control of Fixed-Wing UAV with Automatic Controller Tuning,” IEEE Trans. Control Syst. Technol., vol. 26, no. 4, pp. 1192–1203, 2018, doi: 10.1109/TCST.2017.2709274.

T. Prakoso et al., “SISTEM KESTABILAN SUDUT PITCH PADA UAV,” vol. 3, no. 2, pp. 76–84, 2016.

D. B. Widyantara, R. Sumiharto, and S. B. Wibowo, “Purwarupa Sistem Kendali Kestabilan Pesawat Tanpa Awak Sayap Tetap Menggunakan Robust PID,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 6, no. 2, p. 139, 2016, doi: 10.22146/ijeis.15260.

A. Crasta and S. A. Khan, “EFFECT OF ANGLE OF INCIDENCE ON STABILITY DERIVATIVES OF A WING,” pp. 1–6, 1978.

C. P. R. Tuuk et al., “Implementasi Pengendali PID Untuk Kestabilan Posisi Terbang Wahana Tanpa Awak,” vol. 7, no. 1, pp. 53–62, 2018.

A. S. Priambodo et al., “Perancangan Sistem Kendali PD untuk Kestabilan Terbang Melayang UAV Quadcopter,” pp. 117–121, 2017.

R. Kurniawan, T. Winarno, S. Nurcahyo, and O. Tracking, “Implementasi Kontrol PID pada Object Tracking Robot Menggunakan Sensor Kamera PIXY CMUCAM5,” vol. 04, pp. 2–7, 2017.

J. J. Castillo-Zamora, K. A. Camarillo-Gomez, G. I. Perez-Soto, and J. Rodriguez-Resendiz, “Comparison of PD, PID and sliding-mode position controllers for v-tail quadcopter stability,” IEEE Access, vol. 6, no. c, pp. 38086–38096, 2018, doi: 10.1109/ACCESS.2018.2851223.

P. I. D. Controller, E. Apriaskar, N. A. Salim, and D. Prastiyanto, “Performance Evaluation of Balancing Bicopter Using P, Pi, and Pid Controller,” J. Tek. Elektro, vol. 11, no. 2, pp. 44–49, 2019, doi: 10.15294/jte.v11i2.23032.

J. López, R. Dormido, S. Dormido, and J. P. Gómez, “A robust H∞ controller for an UAV flight control system,” Sci. World J., vol. 2015, 2015, doi: 10.1155/2015/403236.




DOI: https://doi.org/10.33365/jtikom.v4i1.3504

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Try Susanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Organized by: The S1 Computer Engineering Study Program, Faculty of Engineering and Computer Science

Published by: Universitas Teknokrat Indonesia

Website: http://jim.teknokrat.ac.id/index.php/jtikom

Email: jtikom@teknokrat.ac.id

Address: ZA. Pagar Alam Street No. 9 -11, Labuhan Ratu, Bandar Lampung, Indonesia 35132

________________________________________________________________________________________

Creative Commons License

Jurnal Teknik dan Sistem Komputer is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.